Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sex Dev ; 15(1-3): 148-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111872

RESUMO

Sex reversal is the process by which an individual develops a phenotypic sex that is discordant with its chromosomal or genotypic sex. It occurs in many lineages of ectothermic vertebrates, such as fish, amphibians, and at least one agamid and one scincid reptile species. Sex reversal is usually triggered by an environmental cue that alters the genetically determined process of sexual differentiation, but it can also be caused by exposure to exogenous chemicals, hormones, or pollutants. Despite the occurrence of both temperature-dependent sex determination (TSD) and genetic sex determination (GSD) broadly among reptiles, only 2 species of squamates have thus far been demonstrated to possess sex reversal in nature (GSD with overriding thermal influence). The lack of species with unambiguously identified sex reversal is not necessarily a reflection of a low incidence of this trait among reptiles. Indeed, sex reversal may be relatively common in reptiles, but little is known of its prevalence, the mechanisms by which it occurs, or the consequences of sex reversal for species in the wild under a changing climate. In this review, we present a roadmap to the discovery of sex reversal in reptiles, outlining the various techniques that allow new occurrences of sex reversal to be identified, the molecular mechanisms that may be involved in sex reversal and how to identify them, and approaches for assessing the impacts of sex reversal in wild populations. We discuss the evolutionary implications of sex reversal and use the central bearded dragon (Pogona vitticeps) and the eastern three-lined skink (Bassiana duperreyi) as examples of how species with opposing patterns of sex reversal may be impacted differently by our rapidly changing climate. Ultimately, this review serves to highlight the importance of understanding sex reversal both in the laboratory and in wild populations and proposes practical solutions to foster future research.


Assuntos
Lagartos , Processos de Determinação Sexual , Animais , Evolução Biológica , Lagartos/genética , Prevalência , Répteis/genética , Processos de Determinação Sexual/genética , Temperatura
2.
Biol Rev Camb Philos Soc ; 95(3): 680-695, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32027076

RESUMO

Many reptiles and some fish determine offspring sex by environmental cues such as incubation temperature. The mechanism by which environmental signals are captured and transduced into specific sexual phenotypes has remained unexplained for over 50 years. Indeed, environmental sex determination (ESD) has been viewed as an intractable problem because sex determination is influenced by a myriad of genes that may be subject to environmental influence. Recent demonstrations of ancient, conserved epigenetic processes in the regulatory response to environmental cues suggest that the mechanisms of ESD have a previously unsuspected level of commonality, but the proximal sensor of temperature that ultimately gives rise to one sexual phenotype or the other remains unidentified. Here, we propose that in ESD species, environmental cues are sensed by the cell through highly conserved ancestral elements of calcium and redox (CaRe) status, then transduced to activate ubiquitous signal transduction pathways, or influence epigenetic processes, ultimately to drive the differential expression of sex genes. The early evolutionary origins of CaRe regulation, and its essential role in eukaryotic cell function, gives CaRe a propensity to be independently recruited for diverse roles as a 'cellular sensor' of environmental conditions. Our synthesis provides the first cohesive mechanistic model connecting environmental signals and sex determination pathways in vertebrates, providing direction and a framework for developing targeted experimentation.


Assuntos
Cálcio/metabolismo , Meio Ambiente , Processos de Determinação Sexual/fisiologia , Vertebrados/fisiologia , Processamento Alternativo/fisiologia , Animais , Evolução Biológica , Feminino , Resposta ao Choque Térmico/fisiologia , Masculino , NF-kappa B/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...